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1. We shall consider the problem of natural convection in a horizontal 
pipe whose cross-section varies harmonically along the axis, the vari- 
ation being small. The. tube forms a cavity in an infinite, solid mass, 
and in it. at infinity, the horizontal gradient of temperature normal to 
the axis of the tube is prescribed. 

Let the axis z be directed along the axis of the tube, the x-axis be- 
ing directed vertically upwards. The equation of the tube surface is 
assumed to be 

xa + ya = R2 (1 + ~f)~, (f(4 = 
2x 

sin 02, 0 = h, ++<i 
> (i-1) 

Here R denotes the mean radius of the tube; A, the spatial period of 
the wave on the tube; a, the greatest absolute departure of the radius 
of the tube from R (all succeeding derivations remain valid also in the 
general case when f is an arbitrary periodic function of Z, on condition 
that it possesses continuous derivatives up to order two). 

The equation for natural convection can be written 111 

vvv= -+ VP’ + vAV + BgrJ, div V = 0 F(i.2) 

VVT = xAT, AT,‘= 0 (1.3) 

Here V = { Vx, Vu, Vzl denotes the velocity vector in the fluid, T and 
T c, respectively, denote the temperature of the fluid and the solid both 
measured with respect to a mean temperature To, averaged over the cavity: 

P’ is the pressure measured with respect to its equilibrium value P, and 
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at T= To; we introduce the following notation and contractions 

-qo, % Pa, c*’ !J = TO/PO, x = XIPoCp 

They are, in order, the viscosity, the thermal conductivity, coefficient 

of thermal expansion of the fluid, specific heat of the fluid at constant 
pressure, kinematic viscosity and thermal diffusivity of the fluid. We 
shall assume that all these parameters are independent of temperature. 
The symbol g denotes the gravitational acceleration and y,, is a unit 
vector in the direction of the acceleration of gravity. 

We shall solve Equations (1.2) and (1.3) subject to the following 
boundary conditions [ 2 1 : 

In the solid mass. at a large distance from the cavity, a constant 
temperature gradient 

aTe 
[ 1 __ =A 

IYX at r--+00 (1.5) 

is prescribed. 

The heat flux and the temperature are constant across the boundary of 

the cavity, which gives 

dT dT 
X-&--X - co 

e dn 1 s 

where K, ~~ denote, respectively, the thermal conductivities of the 
fluid and the solid mass, and n denotes a normal to the tube surface. 

2. The waviness of the surface of the pipe causes considerable 
mathematical difficulties when an attempt is made to satisfy the bound- 
ary conditions. It turns out that the problem can be solved more easily 
if transformed coordinates are used. Instead of x, y, z, we shall use 

= = 1 +$ (2) ’ y = 1 + :j (2) ’ 2=2 

It is easy to see that x, y, z as well as x, y, z are mutually inde- 

pendent, and that in the new system of coordinates, the equation of the 
surface transforms into that of a circular cylinder of radius R. 

Performing the transformation of coordinates (2.1) in Equations (1.2). 
(1.3) and in the boundary conditions (1.4)-(1.6), we introduce dimension- 
less quantities, taking the mean radius R as a reference length. In this 
manner, in the equations as well as in the boundary conditions, it is 
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necessary to perform transformations according to the following formulas: 

x = rg‘. y=lq, z=RC (1 = R [1 + Ef (41) (2.2) 

v, = ;- Y, V,=-&, v,+u 
V= 

T = ARB, T, = ARB,, P’ = -jj- POP 

(2.3) 

Here. U, v, II. 8, ee, p are functions of c, W, r. 

In these transformed coordinates, the equation of the surface of the 
pipe whose cross-section is variable becomes identical with that of the 
surface of a circular cylinder whose radius is equal to unity. Further- 
more, owing to the transformation (2.1), the interior points of the 
cavity transform into interior points, and those on the boundary, equal -Y, 

transform into points on the boundary. 

If the waviness of the pipe can be assumed to be small, we can show 
with the aid of simple calculations that it is possible to derive an 
approximate equation of the problem in the new form, with an accuracY UP 
to terms which appear multiplied by t to the first power, and the same 
applies to the boundary conditions. 

3. The problem considered is “of the type without a threshold” [ 2,3 1. 
Consequently, in solving it we can use the method of successive approxi- 
mations, assuming a solution expanded in powers of the Grashoff number y. 
In order to solve the resulting linear differential equations, each cor- 
responding to a power of the Grashoff number, we shall in turn use series 
expansions in terms of the wave amplitude of the tube E, and once again 
use the method of successive approximations. 

We are now looking for solutions in the form of series in powers Of 
y, i.e. 

u = yu1+ yu, + . . . , 
v = p1 f pv1 + . . . , 

20 = TWl$ r52 + . . . , 

p = yp1+ -lap2 + . . . (7 = !30u-2gR4A) 

0 = 00 + 701 t -p02 + . . (3.1) 
ee = e0’ + Tel’ + P132’ + . . . 

Substituting the series (3.1) into the equation of the problem, we 
shall obtain equations for the successive determination of the functions 
e,, e,‘, U1, vl, r18 pl, e,, e,‘, u2a v2, v2, p2, e,, e,‘, . . . . 

Restricting ourselves to the first approximation in terms of y, we 
shall in turn seek solutions for these functions, in the form-of the 
linear parts of series in terms of 6: 
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00 = 000 + %I* 80 = 800' + ce01' 

Ul = UIO + EUllr 1'1 = t'10 + =v11, zL'1= WlO + EWll 

Pl = PlO + EPIIP 01 = Go + 419 81' = 810' $ E&l 

(3.2) 

(3.3) 

The coefficients of the truncated series (3.2) and (3.3) are functions 
of [, 7, 6. They are determined by linear differential equations of 

second order, each provided with suitable boundary conditions. 

8 
Exact solutions for the functions 8,,, 6e,,‘, ule, ule, sl,,, PI,,, 8,,, 

8 
Ie’are known. The equations for 8,,, eel’, all, 
,,’ 

Vll> ‘11’ Pll’ 811. 
have been solved by us. In this manner we have determined the zero- 

order and first-order approximations with respect to both parameters y 

and 6 for the temperature, velocity and pressure functions. 

4. In every approximation for temperature and velocity in the expan- 
sion in powers of the Grashoff number, the zero-order approximations with 
respect to the wave amplitude 6 the equations are identical with the 

known results for the pipe of constant cross-section [2,3 I; the first- 
order and higher approximations in terms of t represent the effects of 

waviness on the processes of convection. The first-order approximation 
for velocity in the expansion in the terms of Grashoff number together 
with the first approximation in the series in terms of 6 represents the 

motion of the fluid and shows that it differs from that in a circular 

tube by the presence of longitudinal and radial non-zero components, in 
addition to the aximuthal component. The additional components depend on 
twice the angle. The variation along the axis of all components of velo- 

city is sinusoidal with a period equal to that of the tube. The first 
approximation in the expansion in terms of the Grashoff number for 
temperature together with the first approximation in 6 depends on three 

times the angle (in the case of a circular cross-section such type of 
dependence appears only in the second terms of the series in Grashoff 
numbers); the temperature varies along the tube harmonically, but is 

phase angle is displaced by a quantity which vanishes for K = Kc. 

Higher-order terms in the expansion in terms of 6 constitute small 

scale motions; for example, the second term for velocity varies period- 

ically along the tube with a double period compared to that of the tube 

cross-section. 

The results obtained during this investigation can be generalized and 

used for the study of temperature distributions in horizontal pipes 
whose cross-sections vary along the axis according to a more complicated 
law, because at each step the equations are linear and hence the equation 
of the surface of the tube can be expanded into a Fourier series. 
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